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1. INTRODUCTION 
     The study of combined conduction and radiation heat 
transfer in a participating medium has attracted 
considerable interest due to its important applications in 
areas like multilayer insulation with fillers, fire 
protection etc. An exact analytical solution to the highly 
non-linear integro-differential radiative transport 
equation is almost impossible to find. Further the 
coupling of energy conservation and radiative transport 
equations in combined mode of conduction and radiation 
heat transfer requires an iterative solution procedure. The 
temperature distribution and heat transfer are influenced 
by the aspect ratio of the enclosure. In the present study, 
the combined conduction and radiation heat transfer has 
been analyzed within rectangular enclosures of various 
aspect ratios.  
     Many researchers have developed approximate 
solutions to radiative transport equation (RTE). In the 
early studies most of the analyses were made for 
one-dimensional gray medium problems. Love and 
Grosh, 1965 studied numerically, the combined heat 
transfer in one-dimensional emitting, absorbing and 
non-scattering planar gray media. Yuen and Wang, 1980 
investigated the influence of the anisotropic scattering on 
combined heat transfer in one-dimensional planar 
geometry. It was found that anisotropic scattering has a 
significant effect on the total heat flux and the 
temperature profile in the medium. Benim, 1988 also 
used the finite element method for solving RTE for 

one-dimensional problems applying moment method. 
Ratzel, 1983 reported the results of a study to 
two-dimensional radiation in absorbing emitting media 
using PN approximation method for isothermal boundary 
conditions and concluded that PN method was reasonably 
accurate. Mahapatra et al., 1999 analyzed the problem of 
combined conduction and radiation in absorbing, 
emitting gray medium inside a square enclosure. 
P1-approximation has been applied to the radiative 
transport equation. The radiative transport equation 
along with the equation of energy conservation has been 
numerically discretised by finite difference method. The 
influences of radiation conduction parameter, optical 
thickness of the medium and surface emissivity on the 
temperature distributions and heat flux were also 
discussed. Razzaque et al., 1984 used finite element 
method for coupled radiative and conductive heat 
transfer problem inside a rectangular enclosure with 
isothermal walls with distributed energy sources. 
Problems involving lower surface emissivity values of 
the wall and high values of conduction radiation 
parameter were not been considered in the work. Ho and 
Ozisik, 1988 analyzed the combined conduction and 
radiation in an absorbing, emitting and isotropically 
scattering medium inside a rectangular enclosure with 
isothermal walls. The Galerkin method was used to 
obtain the solution to the radiation part of the problem. 
In the present study, the combined conduction and 
radiation in rectangular enclosures has been considered. 
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The bottom wall of the enclosure is at higher temperature 
and all other walls are at half of the hot wall temperature. 
The influences of radiation-conduction parameter, aspect 
ratio and radiative properties on temperature 
distributions and heat transfer have been discussed.  
 
 
2. ANALYSIS 
 

     Fig 1. Computational domain and coordinate system. 
 
     Consider a rectangular cavity of width L and height H. 
The medium of the enclosure which is an absorbing, 
emitting and isotropically scattering one is assumed to be 
of constant property. The bottom wall of the cavity is 
isothermal at temperature TH K and all other walls are at 
50% of it. The corresponding non-dimensional 
temperatures are θ=1 and θ=0.5 respectively as depicted 
in Fig. 1. 
     For 2-D steady state combined conduction and 
radiation without internal heat generation, the energy 
conservation equation can be expressed as, 
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The boundary conditions are 
T=TH at y=0; 0<x<L and 
T=0.5 TH at y=H; 0<x<L 
T=0.5 TH at x=0,L; 0≤y≤H.  
 
     The radiative transport equation for an absorbing, 
emitting and scattering medium under quasi-steady 
condition expressed by Modest, 1993  is  
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     Using P1 approximation method (Modest, 1993), the 
radiative transport equation is reduced to 
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 at all walls (Marshak’s boundary conditions, Modest, 
1993) 

     The following parameters are used for expressing 
above governing equations in dimensionless form.  
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     Using dimensionless quantities as above, the energy 
conservation equation (1) can be expressed as, 
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The boundary conditions are 
θ=1,        at Y=0 for 0<X<1                                                    (6a) 

θ=0.5,     at Y=AR for 0<X<1                                              (6b) 

θ=0.5,     at X=0,1 for 0≤Y≤1                                                (6c) 

The radiative transport equation is expressed as 
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3. NUMERICAL PROCEDURE 
     The governing equations are solved by finite elements. 
The computational domain is represented by 21 x 21 
nodes and 800 linear triangular elements for AR=1. 
Keeping the number of divisions constant along the 
width of the cavity (x-direction), the number of divisions 
along the height (y-direction) is varied to keep the grid 
size almost same for different aspect ratios.  
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Fig 2. Flow chart for solving the problem 
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     The element equations are developed first using 
Galerkin’s method and then assembled in order to get 
equations for the whole computational domain. The 
necessary boundary conditions are imposed, which 
modifies both the conductivity matrix and heat rate 
vector appropriately. The governing equations for energy 
conservation (5) and radiative transport equation (7) are 
coupled through source terms. The equations for 
boundary conditions (6) and (8) are also interlocked. 
Therefore the solution of the above equations can only be 
obtained through iteration. The flow chart of numerical 
procedure has been outlined in Fig. 2. During the 
numerical investigation, the authors experienced that, 
under-relaxation of momentum equation and energy 
equation is required for obtaining the convergence. 
 
 
4. RESULTS AND DISCUSSION 
     Numerical simulations are performed on absorbing, 
emitting and scattering media within rectangular 
enclosures of various aspect ratios to study the effects of 
various parameters on temperature distribution and heat 
transfer for combined conduction and radiation 
phenomenon. The results are discussed as follows: 
 
Effect of radiation on center temperature 

 
Fig 3. Variation of center temperature with aspect ratio 

 
     Heat is supplied by the bottom wall and received by 
all other walls. Figure 3 shows the variation of center 
temperature T (0.5, 0.5*AR) with aspect ratio for RC=1, 
10 and 100. The heat transfer from bottom hot wall raises 
the center temperature whereas that through the vertical 
walls lowers the center temperature. Keeping the width 
constant, increase in AR implies increase in height of the 
enclosure. The heat loss through the vertical walls is 
increased with AR, which results in decrease in center 
temperature. For higher values of radiation conduction 
parameter the center temperature increases due to higher 
radiation effect. 
 
Effect of aspect ratio on vertical centerline 
temperature 
     For a given RC, the total radiation heat transfer from 
the bottom wall is constant, but the total conduction heat 
loss from the vertical walls depend on the aspect ratio 
since the height of the vertical walls is changed while the 
length of the bottom wall is constant. Figure 4 shows the 

variation of vertical centerline temperatures with aspect 
ratio. The heights of the enclosures are 
non-dimensionalised with the aspect ratio (i.e., Y/AR) to 
take into account different heights while comparing the 
vertical centerline temperatures. 
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(a) RC=1 
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(b) RC=10 
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(c) RC=100 

 
Fig. 4 effect of aspect ratio on vertical centerline 

temperature for (a) RC=1, (b) RC=10 AND (c) RC=100 
 

     At RC=1 and 10, the plots of centerline temperatures 
are almost straight for lower values of AR (0.2 and 0.5). 
But the concavity of the plots for higher aspect ratios (say, 
2 and 3) at RC=1 is more than that for corresponding 
aspect ratios at RC=10 as evident from Figs. 4 a and b. 
     The total radiation from the bottom wall is 
comparable with the total heat loss from vertical walls at 
lower AR. But with increase in the aspect ratio, the total 
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heat loss from the vertical walls increases thereby 
decreasing the centerline temperature compared to that in 
a plane slab. This increases the concavity of the curves. 
This is also evident from the isotherms for AR=0.5 and 2 
at RC=1 (Figs. 5 a and b). The isotherms are almost 
equally spaced from bottom to top wall for the former 
whereas they are closely spaced near bottom wall and 
very widely spaced towards top wall for the latter. This is 
because the energy transfer from the bottom wall towards 
the top wall is effective for smaller aspect ratios, but it is 
not so for larger aspect ratios owing to small radiation 
effect.  
 

0 . 9 5
0 . 9

0 . 8 5
0 . 8

0 . 7 5
0 . 7

0 . 6 5
0 . 6

0 . 5 5

0 0 . 2 0 . 4 0 . 6 0 . 8 1
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

 
(a) AR = 0.5, RC=1 
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(b) AR=2, RC=1 
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(c) AR=2, RC=100 

 
Fig. 5 isotherms for (a) AR = 0.5, RC=1 

 (b) AR=2, RC=1 AND (c) AR=2, RC=100 
 
     For a given aspect ratio, the radiation heat transfer 
from bottom wall increases with increase in RC, which 
makes the temperature gradient uniform (Fig. 5 b and c). 
     At RC=100, the conduction heat transfer is negligible 
compared to radiation heat transfer. So the temperature 
distribution is mainly governed by the radiation 
phenomena. Figure 4 c shows that the vertical centerline 
temperature near the bottom wall is decreasing 
continuously with increase in AR. This is because the 
portion of radiation heat energy transferred from the 
bottom wall to the vertical walls increases with AR. This 
is corroborated with the higher temperature gradient near 
the walls as seen from Fig. 5 c. The core is heated by the 
radiations from the bottom wall making the temperature 
somewhat uniform. This effect is not more prominent for 
AR=0.2 as the dimension of the vertical walls is very less 
compared to that of the horizontal walls. 
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Effect of single scattering albedo on vertical 
centerline temperature distribution 
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Fig 6. effect of single scattering albedo on vertical 

centerline temperature (AR=1, RC=100) 
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(a) ω = 0 
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(b) ω = 0.75 
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(c) ω = 0.95 

 
Fig 7. Isotherms for (a) ω=0, (b) ω=0.75,  

AND (c)  ω=0.95 (AR=1, RC=100) 
 
     The variations of vertical centerline temperatures in a 
square enclosure at RC=100 for various values of single 
scattering albedo (ω) ranging from 0 to 1 are shown in 
Fig. 6. The vertical centerline temperatures are more at 
lower values of ω and vice versa. Smaller value of ω 
indicates less scattering and more absorbing capacity of 
the medium. So temperature of the medium increases 
since more energy is absorbed. The effect is more 
pronounced at higher values of ω compared to that at 
lower values. 
     Exceptions occur near hot surface where crossing of 
temperature plots occurs (Fig. 6). Figure 7 (a) shows that 
the isotherms are more closely packed near all the walls 
for lower value of ω=0 compared to those for higher 
values of ω (Figs. 7 b and c). The same is reflected in the 
vertical centerline temperature showing higher 
temperature gradient near horizontal walls (bottom and 
top) for lower value of ω and vice versa. This leads to 
crossing of vertical centerline temperature plots. The 
temperature distribution is identical with that for pure 
conduction at ω=1. From Eq. (7), it is clear that when 
ω=1, the last term of the radiative transport equation 
containing temperature vanishes. So the energy 
conservation equation and the radiative transport 
equation are decoupled. As can be observed from the 
flow chart (Fig. 2), the upgraded solution of the radiative 
transport equation cannot be obtained. So the loop 
terminates and the temperature for the pure conduction is 
obtained. 
 
 
5. CONCLUSIONS 
     Combined conduction and radiation heat transfer in 
absorbing, emitting and isotropically scattering 
rectangular enclosures has been studied numerically. The 
effect of radiation conduction parameter, aspect ratio and 
radiative properties on temperature distribution and heat 
transfer are analysed and discussed. The following 
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conclusions are made from the study. 
• The heat loss at vertical walls through 

conduction affects the center temperature 
effectively decreasing the center temperature at 
higher aspect ratios. 

• The temperature gradient along vertical is 
almost uniform when radiation conduction 
parameter is less, but for higher radiation 
conduction parameter, the gradient is 
comparatively more near the bottom hot wall 
and less near the top cold wall. 

• The temperature within the enclosure is more 
uniformly distributed at higher values of single 
scattering albedo due to the scattering effect of 
the medium. 
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7. NOMENCLATURE 
 

Sym
bol 

Meaning Unit 

AR Aspect Ratio (H/L) 
(dimensionless) 

(--) 

G Incident radiation (W/m2) 
G* Incident radiation 

(dimensionless) 
(--) 

H Height of the cavity (m) 
I Intensity of radiation (W/m2.sr) 
k Thermal conductivity (W/m.K) 
L Width of the cavity (m) 
q Heat flux (W/m2) 
Q Heat flux (dimensionless) (--) 
RC Radiation conduction parameter 

(dimensionless) 
(--) 

T Temperature K 
x Co-ordinate in x-direction (m) 
X Co-ordinate in x-direction 

(dimensionless) 
(--) 

y Co-ordinate in y-direction (m) 
Y Co-ordinate in y-direction 

(dimensionless) 
(--) 

α Thermal diffusivity (m2/s ) 
β Volumetric co-efficient of 

thermal expansion 
(K-1) 

ε Emissivity of walls 
(dimensionless) 

(--) 

Ω Solid angle (sr) 
ρ Density (kg/m3) 
   
σ Stefan-Boltzmann constant (W/m2.K4) 
θ Temperature (dimensionless) (--) 
τ Optical thickness 

(dimensionless) 
(--) 

ω Single scattering albedo 
(dimensionless) 

(--) 

 
Subscripts 
b=Blackbody 
c= Conduction  
C=Cold wall 
H= Hot wall  
R=Radiation 
W=Wall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


